Bi-Hamiltonian structure of Sutherland models coupled to two u(n)* -valued spins from Poisson reduction

Author:

Fehér L

Abstract

Abstract We introduce a bi-Hamiltonian hierarchy on the cotangent bundle of the real Lie group GL ( n , C ) , and study its Poisson reduction with respect to the action of the product group U(n) × U(n) arising from left- and right-multiplications. One of the pertinent Poisson structures is the canonical one, while the other is suitably transferred from the real Heisenberg double of GL ( n , C ) . When taking the quotient of T * GL ( n , C ) we focus on the dense open subset of GL ( n , C ) whose elements have pairwise distinct singular values. We develop a convenient description of the Poisson algebras of the U(n) × U(n) invariant functions, and show that one of the Hamiltonians of the reduced bi-Hamiltonian hierarchy yields a hyperbolic Sutherland model coupled to two u ( n ) * -valued spins. Thus we obtain a new bi-Hamiltonian interpretation of this model, which represents a special case of Sutherland models coupled to two spins obtained earlier from reductions of cotangent bundles of reductive Lie groups equipped with their canonical Poisson structure. Upon setting one of the spins to zero, we recover the bi-Hamiltonian structure of the standard hyperbolic spin Sutherland model that was derived recently by a different method.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3