Static Symmetric Solutions of the Semi-Classical Einstein–Klein–Gordon System

Author:

Sanders KoORCID

Abstract

AbstractWe consider solutions of the semi-classical Einstein–Klein–Gordon system with a cosmological constant $$\Lambda \in \mathbb {R}$$ Λ R , where the spacetime is given by Einstein’s static metric on $$\mathbb {R}\times \mathbb {S}^3$$ R × S 3 with a round sphere of radius $$a>0$$ a > 0 and the state of the scalar quantum field has a two-point distribution $$\omega _2$$ ω 2 that respects all the symmetries of the metric. We assume that the mass $$m\ge 0$$ m 0 and scalar curvature coupling $$\xi \in \mathbb {R}$$ ξ R of the field satisfy $$m^2+\xi R>0$$ m 2 + ξ R > 0 , which entails the existence of a ground state. We do not require states to be Hadamard or quasi-free, but the quasi-free solutions are characterised in full detail. The set of solutions of the semi-classical Einstein–Klein–Gordon system depends on the choice of the parameters $$(a,\Lambda ,m,\xi )$$ ( a , Λ , m , ξ ) and on the renormalisation constants in the renormalised stress tensor of the scalar field. We show that the set of solutions is either (i) the empty set, or (ii) the singleton set containing only the ground state, or (iii) a set with infinitely many elements. We characterise the ranges of the parameters and renormalisation constants where each of these alternatives occur. We also show that all quasi-free solutions are given by density matrices in the ground state representation and we show that in cases (ii) and (iii) there is a unique quasi-free solution which minimises the von Neumann entropy. When $$m=0$$ m = 0 this unique state is a $$\beta $$ β -KMS state. We argue that all these conclusions remain valid in the reduced order formulation of the semi-classical Einstein equation.

Funder

Irish Research Council

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics

Reference35 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wormhole Restrictions from Quantum Energy Inequalities;Universe;2024-07-06

2. A generalization of the Hawking black hole area theorem;General Relativity and Gravitation;2024-05

3. Cosmological de Sitter Solutions of the Semiclassical Einstein Equation;Annales Henri Poincaré;2023-05-09

4. On the initial value problem for semiclassical gravity without and with quantum state collapses;Journal of Cosmology and Astroparticle Physics;2023-01-01

5. ADM mass in warp drive spacetimes;General Relativity and Gravitation;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3