On the initial value problem for semiclassical gravity without and with quantum state collapses

Author:

Juárez-Aubry Benito A.,Kay Bernard S.,Miramontes Tonatiuh,Sudarsky Daniel

Abstract

Abstract Semiclassical gravity is the theory in which the classical Einstein tensor of a spacetime is coupled to quantum matter fields propagating on the spacetime via the expectation value of their renormalized stress-energy tensor in a quantum state. We explore two issues, taking the Klein Gordon equation as our model quantum field theory. The first is the provision of a suitable initial value formulation for the theory. Towards this, we address the question, for given initial data consisting of the classical metric and its first three 'time' derivatives off the surface together with a choice of initial quantum state, of what is an appropriate 'surface Hadamard' condition such that, for initial data for which it is satisfied it is reasonable to conjecture that there will be a Cauchy development whose quantum state is Hadamard. This requires dealing with the fact that, given two points on an initial surface, the spacetime geodesic between them does not, in general, lie on that surface. So the (squared) geodesic distance that occurs in the Hadamard subtraction differs from that intrinsic to the initial surface. We handle this complication by expanding the former as a suitable 3-dimensional covariant Taylor expansion in the latter. Moreover the renormalized expectation value of the stress-energy tensor in the initial surface depends explicitly on the fourth, 'time', derivative of the metric, which is not part of the initial data, but which we argue is given, implicitly, by the semiclassical Einstein equations on the initial surface. (The rôle played by those equations also entails that the surface Hadamard condition subsumes the constraints.) We also introduce the notion of physical solutions, which, inspired by a 1993 proposal of Parker and Simon, we define to be solutions which are smooth in ħ at ħ = 0. We conjecture that for these solutions the second and third time derivatives of the metric will be determined once the first and second time derivatives are specified. We point out that a simpler treatment of the initial value problem can be had if we adopt yet more of the spirit of Parker and Simon and content ourselves with solutions to order ħ which are Hadamard to order ħ. A further simplification occurs if we consider semiclassical gravity to order ħ 0. This resembles classical general relativity in that it is free from the complications of higher derivative terms and does not require any Hadamard condition. But it can still incorporate nontrivial quantum features such as superpositions of classical-like quantum states of the matter fields. Our second issue concerns the prospects for combining semiclassical gravity with theories of spontaneous quantum state collapse. We will focus our attention on proposals involving abrupt changes in the quantum field state which occur on certain (random, non-intersecting) Cauchy surfaces according to some — yet to be developed — generally covariant objective collapse model but that, in between such collapse surfaces, we have a physical semiclassical solution (or a solution of order O(ħ) or a solution of order O(ħ 0)). On each collapse surface, the semiclassical gravity equations will necessarily be violated and, as Page and Geilker pointed out in 1981, there will therefore necessarily be a discontinuity in the expectation value of the renormalized stress-energy tensor. Nevertheless, we argue, based on our conjecture about the well-posedness of the initial value problem for physical solutions, that, with a suitable rule for the jump in the metric and/or the extrinsic curvature, the time evolution will still be uniquely determined. We tentatively argue that a natural jump rule would be one in which the metric itself and the transverse traceless part of the extrinsic curvature will be continuous and the jump will be confined to the remaining parts of the extrinsic curvature. We aid and complement our discussion by studying our two issues also in the simpler cases of a semiclassical scalars model and semiclassical electrodynamics.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference103 articles.

1. Measurement Analysis and Quantum Gravity;Albers;Phys. Rev. D,2008

2. Hadamard renormalization for a charged scalar field;Balakumar;Class. Quant. Grav.,2020

3. Dynamical reduction models;Bassi;Phys. Rept.,2003

4. Relativistic state reduction dynamics;Bedingham;Found. Phys.,2011

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eternal inflation and collapse theories;Journal of Cosmology and Astroparticle Physics;2024-01-01

2. Semiclassical dynamics of Hawking radiation;Classical and Quantum Gravity;2023-09-15

3. What happens once an accelerating observer has detected a Rindler particle?;Physical Review D;2023-07-05

4. Cosmological de Sitter Solutions of the Semiclassical Einstein Equation;Annales Henri Poincaré;2023-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3