Funder
National Natural Science Foundation of China
Shenzhen Fundamental Research Fund
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Lin, Y., McPhee, J., Azad, N.L.: Anti-jerk on-ramp merging using deep reinforcement learning. In: 31st IEEE Intelligent Vehicles Symposium (IV), Electr Network, pp. 7–14. IEEE (2020)
2. Nakka, S.K.S., Chalaki, B., Malikopoulos, A.A.: A multi-agent deep reinforcement learning coordination framework for connected and automated vehicles at merging roadways. In: American Control Conference (ACC), Atlanta, GA, pp. 3297–3302. IEEE (2022)
3. Min, H., Fang, Y., Wu, X., Wu, G., Zhao, X.: On-ramp merging strategy for connected and automated vehicles based on complete information static game. J. Traffic Transp. Eng.-Engl. Ed. 8(4), 582–595 (2021). https://doi.org/10.1016/j.jtte.2021.07.003
4. Claussmann, L., Revilloud, M., Gruyer, D., Glaser, S.: A review of motion planning for highway autonomous driving. IEEE Trans. Intell. Transp. Syst. 21(5), 1826–1848 (2020). https://doi.org/10.1109/tits.2019.2913998
5. Cao, W., Mukai, M., Kawabe, T., Nishira, H., Fujiki, N.: Cooperative vehicle path generation during merging using model predictive control with real-time optimization. Control Eng. Pract. 34, 98–105 (2015). https://doi.org/10.1016/j.conengprac.2014.10.005
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献