Development and Validation of a Simple, Selective, and Accurate Reversed-Phase Liquid Chromatographic Method with Diode Array Detection (RP-HPLC/DAD) for the Simultaneous Analysis of 18 Free Amino Acids in Topical Formulations

Author:

Kahsay Birhanu Nigusse,Moeller Lucie,Imming Peter,Neubert Reinhard H. H.,Gebre-Mariam Tsige

Abstract

AbstractEven though there are reported methods for the quantification of free amino acids (FAAs) in biological products, no work has been done on the analysis of these substances in formulations. Moreover, further research is required as the reported methods do not fulfill analytical method requirements. The objective of this study was, therefore, to develop and validate a rapid, reliable, and appropriate RP-HPLC/DAD method for the simultaneous determination of 18 FAAs (l-Ala, l-Arg, l-Asn, l-Asp, l-Gln, l-Glu, l-Gly, l-His, l-Ile, l-Lue, l-Lys, l-Met, l-Orn, l-Phe, l-Pro, l-Ser, l-Thr, and l-Val) in topical formulations. After appropriate method development, the technique was validated for selectivity, linearity and range, limit of detection, limit of quantification, precision, and accuracy. The samples were derivatized with 9-fluorenylmethyl chloroformate (Fmoc-Cl). Chromatographic separation was performed on InfinityLab Poroshell 120 E.C 18 (3 × 50) mm, 2.7 μm column at 25 °C. The mobile phase consisting of water and acetonitrile adjusted to appropriate pH was pumped in gradient mode at a flow rate of 0.7 mL/min. Ten microliters were injected and analyte detection was conducted using a DAD. The results indicate that the method was selective for these FAAs. It was linear over the concentration range of 5–80 µM with a correlation coefficient greater than 0.995. Moreover, it was sensitive, precise, accurate, and robust. All the reported drawbacks of RP-HPLC-based analysis of FAAs were resolved, and hence, this new method can be considered appropriate for the analysis of these FAAs in topical formulations.

Funder

German Academic Exchange Service New Delhi

Bundesministerium für Forschung und Technologie

Martin-Luther-Universität Halle-Wittenberg

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,Clinical Biochemistry,Biochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3