The Influence of Substrate Topography on the Plasma Jet Flow in the Substrate Boundary Layer under Suspension Plasma Spray Conditions: A Numerical Approach

Author:

Kiełczawa TomaszORCID,Sokołowski Paweł,Małachowska Aleksandra

Abstract

AbstractThis study deals with the numerical analysis of the plasma jet behavior close to the substrate surface depending on its topography. It uses a 2D axisymmetric time-dependent CFD model solved with the Ansys Fluent 2020/R1 package. The model takes into consideration the nonlinear thermophysical properties and turbulent phenomena of the plasma jet as well as its interaction with the microtextured substrate. Representative substrate topographies were considered as a boundary condition in the numerical simulations. They correspond to the bond coats used in Thermal Barrier Coating technology, actually APS sprayed NiCrAlY coatings which were experimentally microtextured using various laser unit operational conditions resulting in different substrate topographies. The numerical calculations showed that the substrate topography, modified and controlled in this work by microtexturing, disturbs the homogeneity of the pressure field in the substrate boundary layer resulting in the periodical pressure fluctuation. It was also observed that the relative local pressure disturbance is more significant in the substrate outer regions than close to the centerline. Then, based on the results of numerical calculations, the potential movement of feedstock particles near to the substrate was discussed. It was concluded that the deposition of fine powders, characterized by a low Stokes number, will be influenced by the pressure field distribution near to the substrate and will take place mainly in the local high-pressure zones. Furthermore, the local swirl of plasma taking place in each fine microtexture, created here by laser ablation, privileges the deposition of such particles on the surface asperities. These observations show that the CFD code modeling opens the possibility of predicting the movement and deposition of particles during plasma spraying, which is essential for understanding coating deposition mechanisms in suspension plasma spray.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Surfaces, Coatings and Films,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3