3D reconstruction of gas cloud concentration field with high temporal and spatial resolution based on an imaging-type FTIR

Author:

Yan Bo12,Li Shuaihui12,Fang Junyong3,Zeng Dandan1,Chen She1,Chen Hao1

Affiliation:

1. Institute of Mechanics, Chinese Academy of Sciences

2. University of Chinese Academy of Sciences

3. Aerospace Information Research Institute, Chinese Academy of Sciences

Abstract

Imaging-type FTIR devices provide numerous benefits for the detection and alarm of hazardous gases. This paper presents an improved algorithm for reconstructing the 3D concentration field of gas clouds, utilizing hypothesis testing and a synchronized algebraic iteration algorithm. Specifically designed for use with imaging-type FTIR devices, this algorithm enables rapid reconstruction of gas cloud concentration fields. Using CFD software, an open-space detection scenario for HFC-152a gas was simulated, and the 3D concentration field was reconstructed from dual-angle column concentration data. The accuracy was confirmed, with a deviation of less than 4.6% in re-projected column concentrations along the center streamline and a maximum deviation of 8.8% between simulated and reconstructed voxel concentrations. Laboratory experiments further validated the algorithm. Two sets of line-of-sight angles yielded similar average total mass results calculated from the continuously reconstructed concentration field, measuring 7285.8 mg and 7310.1 mg, with relative standard deviations of 2.4% and 2.7%, respectively. In an open field, an experimental detection of HFC-152a gas leakage was conducted. The algorithm employed facilitated the 3D reconstruction and precise localization of the gas leak source, which underscores the algorithm’s versatility across various environmental contexts and its utility in determining the source of gas leaks. The lab and open field experiments share a same temporal resolution of 2.9 seconds. The algorithm proposed in this article effectively expands the practicality of imaging-type FTIR devices for real-time gas leak monitoring applications.

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3