Publisher
Springer Science and Business Media LLC
Subject
Civil and Structural Engineering
Reference29 articles.
1. Beckman, G. H., Polyzois, D., and Cha, Y. J. (2019). “Deep learning-based automatic volumetric damage quantification using depth camera.” Automation in Construction, Elsevier, Vol. 99, No. 1, pp. 114–124, DOI:
https://doi.org/10.1016/j.autcon.2018.12.006
.
2. Cha, Y., J., Choi, W., and Büyüköztürk, O. (2017). “Deep learning-based crack damage detection using convolutional neural networks.” Computer-Aided Civil and Infrastructure Engineering, wiley, Vol. 32, No. 5, pp. 361–378, DOI:
https://doi.org/10.1111/mice.12263
.
3. Cha, Y. J., Choi, W., Suh, G., Mahmoudkhani, S., and Büyüköztürk, O. (2018). “Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types.” Computer-Aided Civil and Infrastructure Engineering, Wiley, Vol. 33, No. 9, pp. 731–747, DOI:
https://doi.org/10.1111/mice.12334
.
4. Donahue, J., Jia, Yangqing., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T. (2013). “DeCAF: A deep convolutional activation feature for generic visual recognition.” arXiv:1310.1531v1.
5. Feng, C., Liu, M. Y., Kao, C. C., and Lee, T. Y. (2017). “Deep active learning for civil infrastructure defect detection and classification.” International Workshop on Computing in Civil Engineering 2017, ASCE, Seattle, Washington, pp. 298–306, DOI:
https://doi.org/10.1061/9780784480823.036
.
Cited by
111 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献