Abstract
AbstractANOVA—the workhorse of experimental psychology—seems well understood in that behavioral sciences have agreed-upon contrasts and reporting conventions. Yet, we argue this consensus hides considerable flaws in common ANOVA procedures, and these flaws become especially salient in the within-subject and mixed-model cases. The main thesis is that these flaws are in model specification. The specifications underlying common use are deficient from a substantive perspective, that is, they do not match reality in behavioral experiments. The problem, in particular, is that specifications rely on coincidental rather than robust statements about reality. We provide specifications that avoid making arguments based on coincidences, and note these Bayes factor model comparisons among these specifications are already convenient in the BayesFactor package. Finally, we argue that model specification necessarily and critically reflects substantive concerns, and, consequently, is ultimately the responsibility of substantive researchers. Source code for this project is at github/PerceptionAndCognitionLab/stat_aov2.
Publisher
Springer Science and Business Media LLC
Subject
Developmental and Educational Psychology,Neuropsychology and Physiological Psychology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献