Bayesian hierarchical modeling: an introduction and reassessment

Author:

Veenman Myrthe,Stefan Angelika M.,Haaf Julia M.

Abstract

AbstractWith the recent development of easy-to-use tools for Bayesian analysis, psychologists have started to embrace Bayesian hierarchical modeling. Bayesian hierarchical models provide an intuitive account of inter- and intraindividual variability and are particularly suited for the evaluation of repeated-measures designs. Here, we provide guidance for model specification and interpretation in Bayesian hierarchical modeling and describe common pitfalls that can arise in the process of model fitting and evaluation. Our introduction gives particular emphasis to prior specification and prior sensitivity, as well as to the calculation of Bayes factors for model comparisons. We illustrate the use of state-of-the-art software programs Stan and brms. The result is an overview of best practices in Bayesian hierarchical modeling that we hope will aid psychologists in making the best use of Bayesian hierarchical modeling.

Publisher

Springer Science and Business Media LLC

Subject

General Psychology,Psychology (miscellaneous),Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Experimental and Cognitive Psychology

Reference121 articles.

1. Aczel, B., Hoekstra, R., Gelman, A., Wagenmakers, E.-J., Kluglist, I. G., Rouder, J. N., et al. (2018). Expert opinions on how to conduct and report Bayesian inference. https://doi.org/10.31234/osf.io/23m7f

2. Auguie, B. (2017). gridExtra: Miscellaneous functions for "grid" graphics. Retrieved from https://CRAN.R-project.org/package=gridExtra

3. Aust, F., & Barth, M. (2018). Papaja: Create APA manuscripts with R markdown. Retrieved from https://github.com/crsh/papaja

4. Bates, D., & Maechler, M. (2019). Matrix: Sparse and dense matrix classes and methods. Retrieved from https://CRAN.R-project.org/package=Matrix

5. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3