Author:
Kalogirou Charalampia,Höfft Oliver,Gödde Anna,Papadimitriou Nikolaos,Pandis Pavlos K.,Argirusis Christos,Sourkouni Georgia
Abstract
AbstractPlastics are artificial synthetic organic polymers that have been used in every area of daily life. However, because of their slow degradation rate, their use is contentious. The treatment of the surface of the sample is considered necessary as enzymatic or bacterial attach is not possible if the plastic surface environment is not ideal. The main topic of this work is the investigation of the effect of different advanced oxidation processes (AOP) on the near surface structure of polylactic acid (PLA) samples, which, in turn, can promote the adhesion of enzymes or bacteria for further biodegradation. The Advanced Oxidation Processes that have been used are Ultrasonication, UV photodegradation and Dielectric Barrier Discharge (DBD) plasma. After the treatments, the surfaces were characterized by Infrared Spectroscopy (IR), Drop Contact Angle (DCA), Confocal Laser Scanning Microscopy (CLSM) and X-ray Photoelectron Spectroscopy (XPS). Both ultrasonic and UV treatments have a significant impact on the surface properties of immersed PLA by removing the oxygen-containing groups of the polymer chain, albeit in different ways, while plasma tends to uncover oxygen groups on the surface. The influence of the pre-treatment on improving the adhesion of bacteria on the PLA surface has been proven using a pseudomonas knackmussii strain.
Funder
European Commission
Technische Universität Clausthal
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Polymers and Plastics,Environmental Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献