Affiliation:
1. Biology Department, Dalhousie University, Halifax, Nova Scotia B3H4R2, Canada;
2. Oceans and Atmosphere Business Unit, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania TAS 7001, Australia
3. College of Engineering, University of Georgia, Athens, Georgia 30602, USA
Abstract
Synthetic organic polymers—or plastics—did not enter widespread use until the 1950s. By 2015, global production had increased to 322 million metric tons (Mt) year−1, which approaches the total weight of the human population produced in plastic every year. Approximately half is used for packaging and other disposables, 40% of plastic waste is not accounted for in managed landfills or recycling facilities, and 4.8–12.7 Mt year−1 enter the ocean as macroscopic litter and microplastic particles. Here, we argue that such mismanaged plastic waste is similar to other persistent pollutants, such as dichlorodiphenyltrichloroethane (DDT) or polychlorinated biphenyls (PCBs), which once threatened a “silent spring” on land. Such a scenario seems now possible in the ocean, where plastic cannot be easily removed, accumulates in organisms and sediments, and persists much longer than on land. New evidence indicates a complex toxicology of plastic micro- and nanoparticles on marine life, and transfer up the food chain, including to people. We detail solutions to the current crisis of accumulating plastic pollution, suggesting a Global Convention on Plastic Pollution that incentivizes collaboration between governments, producers, scientists, and citizens.
Subject
General Environmental Science
Cited by
532 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献