Abstract
AbstractIn this study, we investigated the enzymatical degradability and pilot-scale composting of 14 cellulose-based materials. The materials analyzed here were cellulose regenerated from ionic liquid (EMIM[OAc]), carboxymethyl cellulose (CMC) crosslinked by aluminum salt (Al-salt), methyl cellulose, cellulose acetate, butylated hemicellulose: DS: 1, DS: 0.4, and DS: 0.2, cellophane, wet strength paper, nanocellulose, paper partially dissolved by IL, cellulose carbamate, cellulose palmitate, and cellulose octanoate. The aim of the study was to show how chemical substituting and the substituent itself influence the biodegradability of cellulose materials. The enzymatic degradation and pilot-scale composting of these films shows the correlation between the hydrolysis rate and degree of substitution. The enzymatic hydrolysis of cellulose-based films decreased exponentially as the degree of substitution increased. Modifying cellulose to the extent that it gains the strength needed to obtain good mechanical properties, while retaining its natural biodegradability is an important factor when preparing alternatives for plastic films.Graphic Abstract
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Polymers and Plastics,Environmental Engineering
Reference57 articles.
1. Plastics Europe (2018) Plastics—the Facts 2018. An analysis of European plastics production, demand and waste data. Association for Plastics Manufacturers, European Association of Plastics Recycling, Brussels
2. Anthony Browne M, Crump P, Niven SJ et al (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45:9175–9179. https://doi.org/10.1021/es201811s
3. Jambeck JR, Geyer R, Wilcox C et al (2015) Plastic waste inputs from land into the ocean. Science 347:768–771. https://doi.org/10.1126/science.1260352
4. Klemm, D., Philipp, B., Heinze, T., Heinze, U. and Wagenknecht W (1998) Comprehensive cellulose chemistry, vol 1: fundamentals and analytical methods. Wiley-VCH Verlag GmbH, Weinheim
5. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. https://doi.org/10.1002/anie.200460587
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献