Data-driven aggregate modeling of a semiconductor wafer fab to predict WIP levels and cycle time distributions

Author:

Deenen Patrick C.ORCID,Middelhuis Jeroen,Akcay Alp,Adan Ivo J. B. F.

Abstract

AbstractIn complex manufacturing systems, such as a semiconductor wafer fabrication facility (wafer fab), it is important to accurately predict cycle times and work-in-progress (WIP) levels. These key performance indicators are commonly predicted using detailed simulation models; however, the detailed simulation models are computationally expensive and have high development and maintenance costs. In this paper, we propose an aggregate modeling approach, where each work area, i.e., a group of functionally similar workstations, in the wafer fab is aggregated into a single-server queueing system. The parameters of the queueing system can be derived directly from arrival and departure data of that work area. To obtain fab-level predictions, our proposed methodology builds a network of aggregate models, where the network represents the entire fab consisting of different work areas. The viability of this method in practice is demonstrated by applying it to a real-world wafer fab. Experiments show that the proposed model can make accurate predictions, but also provide insights into the limitations of aggregate modeling.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Management Science and Operations Research

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3