Coordinated optimization of equipment operations in a container terminal

Author:

Jonker T.,Duinkerken M. B.,Yorke-Smith N.,de Waal A.,Negenborn R. R.

Abstract

AbstractIncreasing international maritime transport drives the need for efficient container terminals. The speed at which containers can be processed through a terminal is an important performance indicator. In particular, the productivity of the quay cranes (QCs) determines the performance of a container terminal; hence QC scheduling has received considerable attention. This article develops a comprehensive model to represent the waterside operations of a container terminal. Waterside operations comprise single and twinlift handling of containers by QCs, automated guided vehicles and yard cranes. In common practice, an uncoordinated scheduling heuristic is used to dispatch the equipment operating on a terminal. Here, uncoordinated means that the different machines that operate in the container terminal seek optimal productivity solely considering their own respective stage. By contrast, our model provides a coordinated schedule in which operations of all terminal equipment can be considered at once to achieve productivity closer to the QC optimal. The model takes the form of a hybrid flow shop (HFS) with novel features for bi-directional flows and job pairing. The former enables jobs to move freely through the HFS in both directions; the latter constrains certain jobs to be performed simultaneously by a single machine. We solve the coordinated model by means of a tailored simulated annealing (SA) algorithm that balances solution quality and computational time. We empirically study time-bounded variants of SA and compare them with a branch-and-bound algorithm. We show that our approach can produce coordinated schedules for a terminal with up to eight QCs in near real time.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Management Science and Operations Research

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3