Abstract
AbstractPeatlands in the European Union are largely drained for agriculture and emit 25% of the total agricultural greenhouse gas emissions. Drainage-based peatland use has also negative impacts on water quality, drinking water provision and biodiversity. Consequently, key EU environmental policy objectives include the rewetting of all drained peatlands as an essential nature-based solution. Rewetting of peatlands can be combined with site-adapted land use, so-called paludiculture. Paludiculture produces biomass from wet and rewetted peatlands under conditions that maintain the peat body, facilitate peat accumulation and can provide many of the ecosystem services associated with natural, undrained peatlands. The biomass can be used for a wide range of traditional and innovative food, feed, fibre and fuel products. Based on examples in Germany, we have analysed emerging paludiculture options for temperate Europe with respect to greenhouse gas fluxes, biodiversity and indicative business economics. Best estimates of site emission factors vary between 0 and 8 t CO2eq ha−1y−1. Suitability maps for four peatland-rich federal states (76% of total German peatland area) indicate that most of the drained, agriculturally used peatland area could be used for paludiculture, about one-third of the fen area for any paludiculture type. Fen-specific biodiversity benefits from rewetting and paludiculture, if compared to the drained state. Under favourable conditions, paludiculture can be economically viable, but costs and revenues vary considerably. Key recommendations for large-scale implementation are providing planning security by paludiculture spatial planning, establishing best practice sites and strengthening research into crops, water tables and management options.
Funder
Bundesamt für Naturschutz
Universität Greifswald
Publisher
Springer Science and Business Media LLC
Subject
Global and Planetary Change
Reference128 articles.
1. Abel S, Barthelmes A, Gaudig G, Joosten H, Nordt A et al (2019) Klimaschutz auf Moorböden - Lösungsansätze und Best-Practice-Beispiele. Greifswald Moor Centrum-Schriftenreihe 03/2019. https://greifswaldmoor.de/files/dokumente/GMC%20Schriften/201908_Broschuere_Klimaschutz%20auf%20Moorb%C3%B6den_2019.pdf
2. Abel S, Couwenberg J, Dahms T, Joosten H (2013) The database of potential paludiculture plants (DPPP) and results for Western Pomerania. Plant Diversity and Evolution 130:219–228. https://doi.org/10.1127/1869-6155/2013/0130-0070
3. Audet J, Johansen JR, Andersen PM, Baattrup-Pedersen A, Brask-Jensen KM et al (2013) Methane emissions in Danish riparian wetlands: ecosystem comparison and pursuit of vegetation indexes as predictive tools. Ecol Ind 34:548–559. https://doi.org/10.1016/j.ecolind.2013.06.016
4. Augustin J (2003) Gaseous emissions from constructed wetlands and (re) flooded meadows. Publicationes Instituti Geographici Universitatis Tartuensis 94:3–8
5. Augustin J, Chojnicki B (2008) Austausch von klimarelevanten Spurengasen, Klimawirkung und Kohlenstoffdynamik in den ersten Jahren nach der Wiedervernässung von degradiertem Niedermoorgrünland. In: Zak D, Gelbrecht J (eds) Phosphor- und Kohlenstoff-Dynamik und Vegetationsentwicklung in wiedervernässten Mooren des Peenetals in Mecklenburg-Vorpommern: Status, Steuergrößen und Handlungsmöglichkeiten. Berichte des IGB 26. IGB, Berlin, pp 50–67
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献