Use of an Adaptive-Vegetation Model to Restore Degraded Tropical Peat Swamp Forest to Support Climate Resilience

Author:

Dharmawan I. Wayan Susi1,Lisnawati Yunita1,Siahaan Hengki1ORCID,Premono Bambang Tejo1,Iqbal Mohamad1ORCID,Junaedi Ahmad1,Sakuntaladewi Niken1,Bastoni 1,Fauzi Ridwan1,Ramawati 1,Nugroho Ardiyanto Wahyu1,Undaharta Ni Kadek Erosi1ORCID,Achmadi Anang Setiawan2,Setyawati Titiek1,Siregar Chairil Anwar1,Pratiwi 1ORCID,Suhartana Sona1ORCID,Soenarno 1,Dulsalam 1,Sukmana Asep1

Affiliation:

1. Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia

2. Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia

Abstract

Climate change poses significant challenges to ecosystems globally, demanding innovative methods for environmental conservation and restoration. Restoration initiatives require significant amounts of appropriate vegetation that is both adaptive and tolerant to the specific environmental factors. This study introduces an adaptive-vegetation model designed to support ecosystem resilience in the face of climate change. Traditional restoration methods often neglect dynamic environmental conditions and ecosystem interactions, but the model employs real-time data and predictive analytics to adapt strategies to evolving climate variables. The model takes a comprehensive approach, incorporating climate projections, soil health metrics, species adaptability, and hydrological patterns to inform restoration practices. By using a mix of adaptable native species, the model promotes biodiversity. In conclusion, according to the findings of our review, paludiculture and agroforestry could be implemented as models for improving climate resilience, particularly in tropical degraded peat swamp forests. These two models could improve the environment, the economy, and social functions. Finally, improving all three of these factors improves ecological stability. This adaptive-vegetation model represents a significant shift from static, uniform restoration approaches to dynamic, data-driven strategies tailored to specific environments. The future research directions underscore the need for ongoing innovation in conservation practices to safeguard ecosystems amid unprecedented environmental changes. Future efforts will focus on enhancing the model with advanced machine learning techniques and expanding its application to additional ecological contexts.

Publisher

MDPI AG

Reference127 articles.

1. Ritung, S., Wahyunto, N.K., Sukarman, H., and Suparto, T.C. (2011). Peta Lahan Gambut Indonesia Skala 1: 250.000, Balai Besar Litbang Sumberdaya Lahan Pertanian.

2. Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment;Anda;Geoderma,2021

3. Tropical forest and peatland conservation in Indonesia: Challenges and directions;Harrison;People Nat.,2020

4. Surface peat structure and chemistry in a tropical peat swamp forest;Lampela;Plant Soil,2014

5. Partomihardjo, T., Hermawan, E., Pradana, E.W., and Widiastuti, Y. (2020). Flora Riparian Dan Hutan Rawa Gambut Untuk Restorasi Area Dengan Nilai Konservasi Tinggi (NKT) Terdegradasi, Zoological Society of London (ZSL) Indonesia Programme. Available online: https://repository.zsl.org/media/publications/315852-flora-riparian-dan-hutan-rawa-gambut-unt-99ed62b6.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3