Abstract
AbstractClimate change poses a fundamental threat to agriculture within the Nile basin due to the magnitude of projected impacts and low adaptive capacity. So far, climate change impacts on agriculture for the basin have mostly been assessed for single-cropping systems, which may bias the results considering that the basin is dominated by different cropping systems, with about one-third of the crop area under double cropping. In this study, we simulate single- and double-cropping systems in the Nile basin and assess the climate change impacts on different cropping systems under two scenarios, i.e. “no adaptation” and “adaptation to a late-maturing cultivar”. We find that the mean crop yields of maize, soybean and wheat decrease with future warming without cultivar adaptation. We attribute this to the shortening of the growing season due to increased temperature. The decrease is stronger in all single-cropping systems (12.6–45.5%) than in double-cropping systems (5.9–26.6%). The relative magnitude of yield reduction varies spatially with the greatest reduction in the northern part of the basin experiencing the strongest warming. In a scenario with cultivar adaptation, mean crop yields show a stronger increase in double-cropping systems (14.4–35.2%) than single-cropping systems (8.3–13.7%). In this scenario, farmers could possibly benefit from increasing cropping intensities while adapting to late-maturing cultivars. This study underscores the importance of accounting for multiple-cropping systems in agricultural assessments under climate change within the Nile basin.
Funder
Fonds Wetenschappelijk Onderzoek
Vlaamse Interuniversitaire Raad
Horizon 2020 Framework Programme
Publisher
Springer Science and Business Media LLC
Subject
Global and Planetary Change
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献