Can Turbidity Data from Remote Sensing Explain Modelled Spatial and Temporal Sediment Loading Patterns? An Application in the Lake Tana Basin

Author:

Nkwasa Albert,Getachew Rediet Esayas,Lekarkar Katoria,Yimer Estifanos Addisu,Martínez Analy Baltodano,Tang Ting,van Griensven Ann

Abstract

AbstractUnderstanding the spatial and temporal patterns of sediment loading in water bodies is crucial for effective water quality management. Remote sensing (RS) has emerged as a valuable and reliable tool for monitoring turbidity, which can provide insights into sediment dynamics in water bodies. In this study, we investigate the potential of turbidity data derived from RS to explain simulated spatial and temporal sediment loading patterns in the Lake Tana basin, Ethiopia. Utilizing existing RS lake turbidity data from Copernicus Global Land Service (CGLS) and simulated seasonal and multiyear trends of river sediment loadings into Lake Tana from the Soil and Water Assessment Tool (SWAT + model), we estimate correlations at different river inlets into Lake Tana. The results reveal a strong positive correlation (R2 > 0.66) between the multiyear monthly average sediment load from inflow rivers and RS lake turbidity at most river inlets. This indicates that the simulated river sediment loads and lake turbidity at river inlets exhibit similar seasonal patterns. Notably, higher turbidity levels are observed at the river inlet with the highest sediment load export. These findings highlight the potential of RS turbidity products in characterizing temporal and spatial patterns of sediment loadings, particularly in data-scarce regions, contributing to a better understanding of water quality dynamics in such areas.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3