Automatic detection and classification of peri-prosthetic femur fracture

Author:

Alzaid AsmaORCID,Wignall Alice,Dogramadzi Sanja,Pandit Hemant,Xie Sheng Quan

Abstract

Abstract Purpose Object classification and localization is a key task of computer-aided diagnosis (CAD) tool. Although there have been numerous generic deep learning (DL) models developed for CAD, there is no work in the literature to evaluate their effectiveness when utilized in diagnosing fractures in proximity of joint implants. In this work, we aim to assess the performance of existing classification systems on binary and multi-class problems (fracture types) using plain radiographs. In addition, we evaluated the performance of object detection systems using the one- and two-stage DL architectures. Methods A data set of 1272 X-ray images of Peri-prosthetic Femur Fracture PFF was collected. The fractures were annotated with bounding boxes and classified according to the Vancouver Classification System (type A, B, C) by two clinical specialists. Four classification models such as Densenet161, Resnet50, Inception, VGG and two object detection models such as Faster RCNN and RetinaNet were evaluated, and their performance compared. Six confusion matrix-based measures were reported to evaluate fracture classification. For localization of the fracture, Average Precision and localization accuracy were reported. Results The Resnet50 showed the best performance with $$95\%$$ 95 % accuracy and $$94\%$$ 94 % F1-score in the binary classification: fracture/normal. In addition, the Resnet50 showed $$90\%$$ 90 % accuracy in multi-classification (normal, Vancouver type A, B and C). Conclusions A large data set of PFF images and the annotations of fracture features by two independent assessments were created to implement a DL-based approach for detecting, classifying and localizing PFFs. It was shown that this approach could be a promising diagnostic tool of fractures in proximity of joint implants.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3