Abstract
Abstract
Purpose
Predicting changes in face shape from corrective surgery is challenging in growing children with syndromic craniosynostosis. A prediction tool mimicking composite bone and skin movement during facial distraction would be useful for surgical audit and planning. To model surgery, we used a radial basis function (RBF) that is smooth and continuous throughout space whilst corresponding to measured distraction at landmarks. Our aim is to showcase the pipeline for a novel landmark-based, RBF-driven simulation for facial distraction surgery in children.
Methods
An individual’s dataset comprised of manually placed skin and bone landmarks on operated and unoperated regions. Surgical warps were produced for ‘older’ monobloc, ‘older’ bipartition and ‘younger’ bipartition groups by applying a weighted least-squares RBF fitted to the average landmarks and change vectors. A ‘normalisation’ warp, from fitting an RBF to craniometric landmark differences from the average, was applied to each dataset before the surgical warp. The normalisation was finally reversed to obtain the individual prediction. Predictions were compared to actual post-operative outcomes.
Results
The averaged change vectors for all groups showed skin and bone movements characteristic of the operations. Normalisation for shape–size removed individual asymmetry, size and proportion differences but retained typical pre-operative shape features. The surgical warps removed the average syndromic features. Reversing the normalisation reintroduced the individual’s variation into the prediction. The mid-facial regions were well predicted for all groups. Forehead and brow regions were less well predicted.
Conclusions
Our novel, landmark-based, weighted RBF can predict the outcome for facial distraction in younger and older children with a variety of head and face shapes. It can replicate the surgical reality of composite bone and skin movement jointly in one model. The potential applications include audit of existing patient outcomes, and predicting outcome for new patients to aid surgical planning.
Funder
HCA International Foundation
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献