One model to use them all: training a segmentation model with complementary datasets

Author:

Jenke Alexander C.ORCID,Bodenstedt Sebastian,Kolbinger Fiona R.,Distler Marius,Weitz Jürgen,Speidel Stefanie

Abstract

Abstract Purpose Understanding surgical scenes is crucial for computer-assisted surgery systems to provide intelligent assistance functionality. One way of achieving this is via scene segmentation using machine learning (ML). However, such ML models require large amounts of annotated training data, containing examples of all relevant object classes, which are rarely available. In this work, we propose a method to combine multiple partially annotated datasets, providing complementary annotations, into one model, enabling better scene segmentation and the use of multiple readily available datasets. Methods Our method aims to combine available data with complementary labels by leveraging mutual exclusive properties to maximize information. Specifically, we propose to use positive annotations of other classes as negative samples and to exclude background pixels of these binary annotations, as we cannot tell if a positive prediction by the model is correct. Results We evaluate our method by training a DeepLabV3 model on the publicly available Dresden Surgical Anatomy Dataset, which provides multiple subsets of binary segmented anatomical structures. Our approach successfully combines 6 classes into one model, significantly increasing the overall Dice Score by 4.4% compared to an ensemble of models trained on the classes individually. By including information on multiple classes, we were able to reduce the confusion between classes, e.g. a 24% drop for stomach and colon. Conclusion By leveraging multiple datasets and applying mutual exclusion constraints, we developed a method that improves surgical scene segmentation performance without the need for fully annotated datasets. Our results demonstrate the feasibility of training a model on multiple complementary datasets. This paves the way for future work further alleviating the need for one specialized large, fully segmented dataset but instead the use of already existing datasets.

Funder

Bundesministerium für Gesundheit

Deutsches Krebsforschungszentrum

Deutsche Forschungsgemeinschaft

Horizon 2020 Framework Programme

Joachim Herz Stiftung

Publisher

Springer Science and Business Media LLC

Reference17 articles.

1. Jin Y, Yu Y, Chen C, Zhao Z, Heng P-A, Stoyanov D (2022) Exploring intra- and inter-video relation for surgical semantic scene segmentation. IEEE Trans Med Imaging 41(11):2991–3002. https://doi.org/10.1109/TMI.2022.3177077

2. Mohammed A, Yildirim S, Farup I, Pedersen M, Hovde Ø (2019) StreoScenNet: surgical stereo robotic scene segmentation. In: Medical imaging 2019: image-guided procedures, robotic interventions, and modeling, vol 10951, p 109510. SPIE. https://doi.org/10.1117/12.2512518. International Society for Optics and Photonics

3. Yoon J, Hong S, Hong S, Lee J, Shin S, Park B, Sung N, Yu H, Kim S, Park S, Hyung WJ, Choi M-K (2022) Surgical scene segmentation using semantic image synthesis with a virtual surgery environment. In: Medical image computing and computer assisted intervention—MICCAI 2022. Springer, Cham, pp 551–561

4. Fuentes-Hurtado F, Kadkhodamohammadi A, Flouty E, Barbarisi S, Luengo I, Stoyanov D (2019) Easylabels: weak labels for scene segmentation in laparoscopic videos. Int J Comput Assist Radiol Surg 14(7):1247–1257

5. Allan M, Kondo S, Bodenstedt S, Leger S, Kadkhodamohammadi R, Luengo I, Fuentes F, Flouty E, Mohammed A, Pedersen M, Kori A, Alex V, Krishnamurthi G, Rauber D, Mendel R, Palm C, Bano S, Saibro G, Shih C-S, Chiang H-A, Zhuang J, Yang J, Iglovikov V, Dobrenkii A, Reddiboina M, Reddy A, Liu X, Gao C, Unberath M, Kim M, Kim C, Kim C, Kim H, Lee G, Ullah I, Luna M, Park SH, Azizian M, Stoyanov D, Maier-Hein L, Speidel S (2020) 2018 robotic scene segmentation challenge. https://doi.org/10.48550/ARXIV.2001.11190

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3