An image processing tool for the detection of anthracycline-induced cardiotoxicity by evaluating the myocardial metabolic activity in [18F]FDG PET/CT

Author:

Seiffert Alexander P.ORCID,Gómez-Grande AdolfoORCID,Castro-Leal GonzaloORCID,Rodríguez Antonia,Palomino-Fernández DavidORCID,Gómez Enrique J.ORCID,Sánchez-González PatriciaORCID,Bueno HéctorORCID

Abstract

Abstract Purpose Chemotherapy-induced cardiotoxicity is one of the main complications during and after cancer treatment. While echocardiography is the most used technique in clinical practice to evaluate left ventricular (LV) dysfunction, a multimodal approach is preferred for the early detection of anthracycline-induced cardiotoxicity. In this paper, an image processing tool allowing the qualitative and quantitative analysis of myocardial metabolic activity by [18F]fluorodeoxyglucose (FDG) positron emission tomography computed tomography (PET/CT) images, acquired routinely during and after cancer treatment, is presented. Methods The methodology is based on cardiac single photon emission computed tomography image processing protocols used in clinical practice. LV polar maps are created, and quantitative regional values are calculated. The tool was validated in a study group of 24 patients with Hodgkin or non-Hodgkin lymphoma (HL and NHL, respectively) treated with anthracyclines. Staging, interim and end-of-treatment [18F]FDG PET/CT images were acquired and the presented tool was used to extract the quantitative metrics of LV metabolic activity. Results Results show an overall increase of metabolic activity in the interim PET image acquired while on treatment compared to staging PET, which then decreased in the end-of-treatment scan. Positive correlation coefficients between staging and interim scans, and negative correlation coefficients between interim and end-of-treatment scans also support this finding. Metabolic changes occur predominantly in the septal region. Conclusion The proposed methodology and presented software solution provides the capability to assess quantitatively myocardial metabolism acquired by routine [18F]FDG PET/CT scanning during cancer treatment for evaluating anthracycline-induced cardiotoxicity. The [18F]FDG PET/CT septal-lateral uptake ratio is proposed as a new quantitative measure of myocardial metabolism.

Funder

Universidad Politécnica de Madrid

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Reference34 articles.

1. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL, Siegel RL (2019) Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin 69:363–385. https://doi.org/10.3322/caac.21565

2. Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D, Cipolla CM (2016) Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer J Clin 66:309–325. https://doi.org/10.3322/caac.21341

3. Novo G, Nugara C, Fava A, Mantero A, Citro R (2020) Early detection of myocardial damage: a multimodality approach. J Cardiovasc Echogr 30:S4–S10. https://doi.org/10.4103/jcecho.jcecho_2_19

4. Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, Habib G, Lenihan DJ, Lip GYH, Lyon AR, Lopez Fernandez T, Mohty D, Piepoli MF, Tamargo J, Torbicki A, Suter TM, Achenbach S, Agewall S, Badimon L, Barón-Esquivias G, Baumgartner H, Bax JJ, Bueno H, Carerj S, Dean V, Erol Ç, Fitzsimons D, Gaemperli O, Kirchhof P, Kolh P, Nihoyannopoulos P, Ponikowski P, Roffi M, Vaz Carneiro A, Windecker S, Minotti G, Cardinale D, Curigliano G, De Azambuja E, Dent S, Ero C, Ewer MS, Farmakis D, Fietkau R, Kohl P, McGale P, Ringwald J, Schulz-Menger J, Stebbing J, Steiner RK, Szmit S (2016) 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur Heart J 37:2768–2801. https://doi.org/10.1093/eurheartj/ehw211

5. Curigliano G, Lenihan D, Fradley M, Ganatra S, Barac A, Blaes A, Herrmann J, Porter C, Lyon AR, Lancellotti P, Patel A, DeCara J, Mitchell J, Harrison E, Moslehi J, Witteles R, Calabro MG, Orecchia R, de Azambuja E, Zamorano JL, Krone R, Iakobishvili Z, Carver J, Armenian S, Ky B, Cardinale D, Cipolla CM, Dent S, Jordan K (2020) Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol 31:171–190. https://doi.org/10.1016/j.annonc.2019.10.023

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robustness of [18F]FDG PET/CT radiomic analysis in the setting of drug-induced cardiotoxicity;Computer Methods and Programs in Biomedicine;2024-02

2. Novel Imaging Biomarkers to Assess Oncologic Treatment–Related Changes;American Society of Clinical Oncology Educational Book;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3