Novel Imaging Biomarkers to Assess Oncologic Treatment–Related Changes

Author:

Viswanathan Vidya Sankar1,Gupta Amit2,Madabhushi Anant13

Affiliation:

1. Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH

2. Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH

3. Louis Stokes Cleveland VA Medical Center, Cleveland, OH

Abstract

Cancer therapeutics cause various treatment-related changes that may impact patient follow-up and disease monitoring. Although atypical responses such as pseudoprogression may be misinterpreted as treatment nonresponse, other changes, such as hyperprogressive disease seen with immunotherapy, must be recognized early for timely management. Radiation necrosis in the brain is a known response to radiotherapy and must be distinguished from local tumor recurrence. Radiotherapy can also cause adverse effects such as pneumonitis and local tissue toxicity. Systemic therapies, like chemotherapy and targeted therapies, are known to cause long-term cardiovascular effects. Thus, there is a need for robust biomarkers to identify, distinguish, and predict cancer treatment–related changes. Radiomics, which refers to the high-throughput extraction of subvisual features from radiologic images, has been widely explored for disease classification, risk stratification, and treatment-response prediction. Lately, there has been much interest in investigating the role of radiomics to assess oncologic treatment–related changes. We review the utility and various applications of radiomics in identifying and distinguishing atypical responses to treatments, as well as in predicting adverse effects. Although artificial intelligence tools show promise, several challenges—including multi-institutional clinical validation, deployment in health care settings, and artificial-intelligence bias—must be addressed for seamless clinical translation of these tools.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3