Improving instrument detection for a robotic scrub nurse using multi-view voting

Author:

Badilla-Solórzano JorgeORCID,Ihler SontjeORCID,Gellrich Nils-ClaudiusORCID,Spalthoff SimonORCID

Abstract

Abstract Purpose A basic task of a robotic scrub nurse is surgical instrument detection. Deep learning techniques could potentially address this task; nevertheless, their performance is subject to some degree of error, which could render them unsuitable for real-world applications. In this work, we aim to demonstrate how the combination of a trained instrument detector with an instance-based voting scheme that considers several frames and viewpoints is enough to guarantee a strong improvement in the instrument detection task. Methods We exploit the typical setup of a robotic scrub nurse to collect RGB data and point clouds from different viewpoints. Using trained Mask R-CNN models, we obtain predictions from each view. We propose a multi-view voting scheme based on predicted instances that combines the gathered data and predictions to produce a reliable map of the location of the instruments in the scene. Results Our approach reduces the number of errors by more than 82% compared with the single-view case. On average, the data from five viewpoints are sufficient to infer the correct instrument arrangement with our best model. Conclusion Our approach can drastically improve an instrument detector’s performance. Our method is practical and can be applied during an actual medical procedure without negatively affecting the surgical workflow. Our implementation and data are made available for the scientific community (https://github.com/Jorebs/Multi-view-Voting-Scheme).

Funder

Universidad de Costa Rica

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collaborative robot acting as scrub nurse for cataract surgery (CRASCS);Journal of Robotic Surgery;2024-09-12

2. HybGrip: a synergistic hybrid gripper for enhanced robotic surgical instrument grasping;International Journal of Computer Assisted Radiology and Surgery;2024-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3