Author:
Steybe David,Poxleitner Philipp,Metzger Marc Christian,Brandenburg Leonard Simon,Schmelzeisen Rainer,Bamberg Fabian,Tran Phuong Hien,Kellner Elias,Reisert Marco,Russe Maximilian Frederik
Abstract
Abstract
Purpose
Computer-assisted techniques play an important role in craniomaxillofacial surgery. As segmentation of three-dimensional medical imaging represents a cornerstone for these procedures, the present study was aiming at investigating a deep learning approach for automated segmentation of head CT scans.
Methods
The deep learning approach of this study was based on the patchwork toolbox, using a multiscale stack of 3D convolutional neural networks. The images were split into nested patches using a fixed 3D matrix size with decreasing physical size in a pyramid format of four scale depths. Manual segmentation of 18 craniomaxillofacial structures was performed in 20 CT scans, of which 15 were used for the training of the deep learning network and five were used for validation of the results of automated segmentation. Segmentation accuracy was evaluated by Dice similarity coefficient (DSC), surface DSC, 95% Hausdorff distance (95HD) and average symmetric surface distance (ASSD).
Results
Mean for DSC was 0.81 ± 0.13 (range: 0.61 [mental foramen] – 0.98 [mandible]). Mean Surface DSC was 0.94 ± 0.06 (range: 0.87 [mental foramen] – 0.99 [mandible]), with values > 0.9 for all structures but the mental foramen. Mean 95HD was 1.93 ± 2.05 mm (range: 1.00 [mandible] – 4.12 mm [maxillary sinus]) and for ASSD, a mean of 0.42 ± 0.44 mm (range: 0.09 [mandible] – 1.19 mm [mental foramen]) was found, with values < 1 mm for all structures but the mental foramen.
Conclusion
In this study, high accuracy of automated segmentation of a variety of craniomaxillofacial structures could be demonstrated, suggesting this approach to be suitable for the incorporation into a computer-assisted craniomaxillofacial surgery workflow. The small amount of training data required and the flexibility of an open source-based network architecture enable a broad variety of clinical and research applications.
Funder
Universitätsklinikum Freiburg
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献