Automated detection of cephalometric landmarks using deep neural patchworks

Author:

Weingart Julia Vera1ORCID,Schlager Stefan1,Metzger Marc Christian1,Brandenburg Leonard Simon1,Hein Anna1,Schmelzeisen Rainer1,Bamberg Fabian2,Kim Suam2,Kellner Elias3,Reisert Marco3,Russe Maximilian Frederik2

Affiliation:

1. Department of Oral and Maxillofacial Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany

2. Department of Diagnostic and Interventional Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany

3. Department of Medical Physics, Faculty of Medicine, Medical Center – University of Freiburg, University of Freiburg, Freiburg, Germany

Abstract

Objectives This study evaluated the accuracy of deep neural patchworks (DNPs), a deep learning-based segmentation framework, for automated identification of 60 cephalometric landmarks (bone-, soft tissue- and tooth-landmarks) on CT scans. The aim was to determine whether DNP could be used for routine three-dimensional cephalometric analysis in diagnostics and treatment planning in orthognathic surgery and orthodontics. Methods: Full skull CT scans of 30 adult patients (18 female, 12 male, mean age 35.6 years) were randomly divided into a training and test data set (each n = 15). Clinician A annotated 60 landmarks in all 30 CT scans. Clinician B annotated 60 landmarks in the test data set only. The DNP was trained using spherical segmentations of the adjacent tissue for each landmark. Automated landmark predictions in the separate test data set were created by calculating the center of mass of the predictions. The accuracy of the method was evaluated by comparing these annotations to the manual annotations. Results: The DNP was successfully trained to identify all 60 landmarks. The mean error of our method was 1.94 mm (SD 1.45 mm) compared to a mean error of 1.32 mm (SD 1.08 mm) for manual annotations. The minimum error was found for landmarks ANS 1.11 mm, SN 1.2 mm, and CP_R 1.25 mm. Conclusion: The DNP-algorithm was able to accurately identify cephalometric landmarks with mean errors <2 mm. This method could improve the workflow of cephalometric analysis in orthodontics and orthognathic surgery. Low training requirements while still accomplishing high precision make this method particularly promising for clinical use.

Publisher

Oxford University Press (OUP)

Subject

General Dentistry,Radiology, Nuclear Medicine and imaging,General Medicine,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3