Landmark tracking in 4D ultrasound using generalized representation learning

Author:

Wulff DanielORCID,Hagenah Jannis,Ernst Floris

Abstract

Abstract Purpose In this study, we present and validate a novel concept for target tracking in 4D ultrasound. The key idea is to replace image patch similarity metrics by distances in a latent representation. For this, 3D ultrasound patches are mapped into a representation space using sliced-Wasserstein autoencoders. Methods A novel target tracking method for 4D ultrasound is presented that performs tracking in a representation space instead of in images space. Sliced-Wasserstein autoencoders are trained in an unsupervised manner which are used to map 3D ultrasound patches into a representation space. The tracking procedure is based on a greedy algorithm approach and measuring distances between representation vectors to relocate the target . The proposed algorithm is validated on an in vivo data set of liver images. Furthermore, three different concepts for training the autoencoder are presented to provide cross-patient generalizability, aiming at minimal training time on data of the individual patient. Results Eight annotated 4D ultrasound sequences are used to test the tracking method. Tracking could be performed in all sequences using all autoencoder training approaches. A mean tracking error of 3.23 mm could be achieved using generalized fine-tuned autoencoders. It is shown that using generalized autoencoders and fine-tuning them achieves better tracking results than training subject individual autoencoders. Conclusion It could be shown that distances between encoded image patches in a representation space can serve as a meaningful measure of the image patch similarity, even under realistic deformations of the anatomical structure. Based on that, we could validate the proposed tracking algorithm in an in vivo setting. Furthermore, our results indicate that using generalized autoencoders, fine-tuning on only a small number of patches from the individual patient provides promising results.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3