Automated description of the mandible shape by deep learning

Author:

Vila-Blanco NicolásORCID,Varas-Quintana PaulinaORCID,Aneiros-Ardao ÁngelaORCID,Tomás InmaculadaORCID,Carreira María J.ORCID

Abstract

Abstract Purpose The shape of the mandible has been analyzed in a variety of fields, whether to diagnose conditions like osteoporosis or osteomyelitis, in forensics, to estimate biological information such as age, gender, and race or in orthognathic surgery. Although the methods employed produce encouraging results, most rely on the dry bone analyses or complex imaging techniques that, ultimately, hamper sample collection and, as a consequence, the development of large-scale studies. Thus, we proposed an objective, repeatable, and fully automatic approach to provide a quantitative description of the mandible in orthopantomographies (OPGs). Methods We proposed the use of a deep convolutional neural network (CNN) to localize a set of landmarks of the mandible contour automatically from OPGs. Furthermore, we detailed four different descriptors for the mandible shape to be used for a variety of purposes. This includes a set of linear distances and angles calculated from eight anatomical landmarks of the mandible, the centroid size, the shape variations from the mean shape, and a group of shape parameters extracted with a point distribution model. Results The fully automatic digitization of the mandible contour was very accurate, with a mean point to the curve error of 0.21 mm and a standard deviation comparable to that of a trained expert. The combination of the CNN and the four shape descriptors was validated in the well-known problems of forensic sex and age estimation, obtaining 87.8% of accuracy and a mean absolute error of 1.57 years, respectively. Conclusion The methodology proposed, including the shape model, can be valuable in any field that requires a quantitative description of the mandible shape and a visual representation of its changes such as clinical practice, surgery management, dental research, or legal medicine.

Funder

Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3