A semi-automated robotic system for percutaneous interventions

Author:

Siegfarth MariusORCID,Lutz RaffaelORCID,Iseke Nils-ChristianORCID,Moviglia JavierORCID,Sadi FabianORCID,Stallkamp Jan

Abstract

Abstract Purpose A robotic assistive device is developed for needle-based percutaneous interventions. The aim is a hybrid system using both manual and actuated robotic operation in order to obtain a device that has a large workspace but can still fit in the gantry opening of a CT scanner. This will enable physicians to perform precise and time-efficient CT-guided percutaneous interventions. The concept of the mechanics and software of the device is presented in this work. Methods The approach is a semi-automated robotic assistive device, which combines manual and robotic positioning to reduce the number and size of necessary motors. The system consists of a manual rough positioning unit, a robotic fine positioning unit and an optical needle tracking unit. The resulting system has eight degrees of freedom, of which four are manual, which comprise encoders to monitor the position of each axis. The remaining four axes are actuated axes for fine positioning of the needle. Cameras are attached to the mechanical structure for 3D tracking of the needle pose. The software is based on open-source software, mainly ROS2 as robotic middleware, Moveit2 for trajectory calculation and 3D Slicer for needle path planning. Results The communication between the components was successfully tested with a clinical CT scanner. In a first experiment, four needle insertions were planned and the deviation of the actual needle path from the planned path was measured. The mean deviation from the needle path to the target point was 21.9 mm, which is mainly caused both by translational deviation (15.4 mm) and angular deviation (6.8°) of the needle holder. The optical tracking system was able to detect the needle position with a mean deviation of 3.9 mm. Conclusion The first validation of the system was successful which proves that the proposed concept for both the hardware and software is feasible. In a next step, an automatic position correction based on the optical tracking system will be integrated, which is expected to significantly improve the system accuracy.

Funder

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg

Ruprecht-Karls-Universität Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3