Chain flexibility and dynamics of alginate solutions in different solvents

Author:

Maciel Bruna,Oelschlaeger Claude,Willenbacher Norbert

Abstract

AbstractMechanical rheometry, specifically rotational rheometry, squeeze flow, and capillary rheometry, and two microrheology methods, namely multiple-particle tracking (MPT) and diffusing wave spectroscopy (DWS) have been used to get new insight into structural and dynamical properties of alginate dissolved in solvents widely used for bioprinting, namely deionized water, phosphate-buffered saline (PBS), and Dulbecco Modified Eagle Medium (DMEM) cell media. Results demonstrate that alginate rheological properties depend on the solvent quality at concentrations higher than 1 wt.%. In this high concentration regime, in aqueous salt-free and PBS solutions, experimental scaling exponents for the concentration dependence of the specific viscosity ηsp and the plateau modulus G0 agree well with theoretical predictions for neutral polymers in good solvent whereas for the terminal relaxation time TR, the exponent is slightly higher than theoretically predicted, presumably due to the formation of aggregates. For alginate dissolved in DMEM, all exponents for ηsp, G0, and TR agree with predictions for polymers in theta solvents, which might be related to the formation of polyelectrolyte complex as a result of interactions between alginate and amino acids. Chain persistence length lp values, as determined directly from high frequency rheometry for the first time, are independent of alginate concentration and temperature. Lower absolute lp values were found for DMEM solutions compared with the other solvents. Moreover, scaling exponents for ηsp, G0, and TR do not change with temperature, within 20 and 60 °C. These findings suggest no change in the conformation of alginate chains with temperature.

Funder

State ministry of science, research and art of Baden-Württemberg

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Colloid and Surface Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3