Abstract
AbstractSentiment Analysis (SA), a technique based on applying artificial intelligence to analyze textual data in natural language, can help to characterize interactions between students and teachers and improve learning through timely, personalized feedback, but its use in education is still scarce. This systematic literature review explores how SA has been applied for learning assessment in online and hybrid learning contexts in higher education. Findings from this review show that there is a growing field of research on SA, although most of the papers are written from a technical perspective and published in journals related to digital technologies. Even though there are solutions involving different SA techniques that can help predicting learning performance, enhancing feedback and giving teachers visual tools, its educational applications and usability are still limited. The analysis evidence that the inclusion of variables that can affect participants’ different sentiment expression, such as gender or cultural context, remains understudied and should need to be considered in future developments.
Funder
“la Caixa” Foundation
Agència de Gestió d’Ajuts Universitaris i de Recerca
Universitat Rovira i Virgili
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献