Improving the portability of predicting students’ performance models by using ontologies

Author:

López-Zambrano Javier,Lara Juan A.,Romero CristóbalORCID

Funder

Fundación Española para la Ciencia y la Tecnología

Publisher

Springer Science and Business Media LLC

Subject

Education

Reference30 articles.

1. Al-Yahya, M., George, R., & Alfaries, A. (2015). Ontologies in E-learning: Review of the literature. International Journal of Software Engineering and Its Applications, 9(2), 67–84.

2. Baker, R. S. (2019). Challenges for the future of educational data mining: The baker learning analytics prizes. Journal of Educational Data Mining, 11, 1–17.

3. Boyer, S., & Veeramachaneni, K. (2015). Transfer learning for predictive models in massive open online courses. In C. Conati, N. Heernan, A. Mitrovic, & M. Verdejo (Eds.), Artificial intelligence in education. AIED 2015. Lecture notes in computer science. (Vol. 9112). Springer.

4. Castro, F. A., & Alonso, M. A. (2011). Learning objects and ontologies to perform educational data mining. In International conference on frontiers in education: Computer science and computer engineering.

5. Cerezo, R., Sánchez-Santillán, M., Paule-Ruiz, M. P., & Núñez, J. C. (2016). Students’ LMS interaction patterns and their relationship with achievement: A case study in higher education. Computers & Education, 96, 42–54.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bibliometric insights into data mining in education research: A decade in review;Contemporary Educational Technology;2024-04-01

2. Contexts Matter but How? Course-Level Correlates of Performance and Fairness Shift in Predictive Model Transfer;Proceedings of the 14th Learning Analytics and Knowledge Conference;2024-03-18

3. A Survey on Tools and Techniques of Classification in Educational Data Mining;Communications in Computer and Information Science;2024

4. EDUCATIONAL DESIGN AND EVALUATION MODELS OF THE LEARNING EFFECTIVENESS IN E-LEARNING PROCESS: A SYSTEMATIC REVIEW;Turkish Online Journal of Distance Education;2023-10-01

5. Investigating Student's Problem-solving Approaches in MOOCs using Natural Language Processing;LAK23: 13th International Learning Analytics and Knowledge Conference;2023-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3