Free Cholesterol Bioavailability and Atherosclerosis

Author:

Abe Rei J.,Abe Jun-ichi,Nguyen Minh T. H.,Olmsted-Davis Elizabeth A.,Mamun Abrar,Banerjee Priyanka,Cooke John P.,Fang Longhou,Pownall Henry,Le Nhat-Tu

Abstract

Abstract Purpose of Review As both a cholesterol acceptor and carrier in the reverse cholesterol transport (RCT) pathway, high-density lipoprotein (HDL) is putatively atheroprotective. However, current pharmacological therapies to increase plasma HDL cholesterol (HDL-c) concentration have paradoxically failed to prevent or reduce atherosclerosis and cardiovascular disease (CVD). Given that free cholesterol (FC) transfer between surfaces of lipoproteins and cells is reversible, excess plasma FC can be transferred to the cells of peripheral tissue sites resulting in atherosclerosis. Here, we summarize potential mechanisms contributing to this paradox and highlight the role of excess free cholesterol (FC) bioavailability in atherosclerosis vs. atheroprotection. Recent Findings Recent findings have established a complex relationship between HDL-c concentration and atherosclerosis. Systemic scavenger receptor class B type 1 (SR-B1) knock out (KO) mice exhibit with increased diet-induced atherosclerosis despite having an elevated plasma HDL-c concentration compared to wild type (WT) mice. The greater bioavailability of HDL-FC in SR-B1 vs. WT mice is associated with a higher FC content in multiple cell types and tissue sites. These results suggest that dysfunctional HDL with high FC bioavailability is atheroprone despite high HDL-c concentration. Summary Past oversimplification of HDL-c involvement in cholesterol transport has led to the failures in HDL targeted therapy. Evidence suggests that FC-mediated functionality of HDL is of higher importance than its quantity; as a result, deciphering the regulatory mechanisms by which HDL-FC bioavailability can induce atherosclerosis can have far-reaching clinical implications.

Funder

National Institutes of Health

DOD Peer Reviewed Cancer Research Program

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3