Recycled Household Ash in Rice Paddies of Bangladesh for Sustainable Production of Rice Without Altering Grain Arsenic and Cadmium

Author:

Gupta Yogesh,Hossain Mahmud,Islam M. Rafiqul,Talukder Md. Moyeed Hasan,Khokon Md. Atiqur Rahman,Uddin Mohammad Mahir,Kabir Humayun,Carey Manus,Ralphs Kathryn,de Moraes Natalia Valadares,Meharg Andrew A.,Meharg CarolineORCID

Abstract

AbstractIn Bangladesh most agronomic biomass (straw, husk, dried dung) is burnt for domestic cooking use. Consequently, the soil is continuously stripped of mineral nutrients and carbon (C) substrate. Here we investigate if recycling of household ash (ash) as fertilizer can sustainably improve soil fertility as well as minimise accumulation of toxic elements (As, Cd) in rice grain. Large scale field trials across two geographic regions (Barind, Madhupur) and two seasons (wet, dry) and with application of 3 fertiliser treatments (NPKS, ash, NPKS + ash) were conducted. At the end of each season, the impact of region*season*treatment on soil microbial comunities, rice yield, and grain quality (As, Cd, nutrient elements) was assessed. When compared to conventional field application rates of NPKS (control), application of ash boosted rice yield by circa. 20% in both regions during wet and dry season, with no effect on rice grain carcinogenic inorganic arsenic (iAs), dimethylarsonic acid (DMA) or cadmium (Cd), but with potential to increase zinc (Zn). For soil microbial communities, a significant region and season effect as well as correlation with elements in rice grain was observed, amongst these Cd, Zn, iAs and DMA. This study illustrates that application of ash can reduce the requirement for expensive chemical fertiliser, whilst at the same time increasing rice yield and maintaining grain quality, making farming in Bangladesh more sustainable and productive. The study also implies that the combined impact of region, season, and soil microbes determines accumulation of elements in rice grain.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3