Abstract
AbstractThe specific surface area (SSA) of cellulosic or lignocellulosic fibers is seldom reported in the recent literature on papermaking, despite its close relation with the degree of refining and other key pulp properties. Amidst outdated assays (Pulmac permeability test) and methods that, while accurate, are of doubtful usefulness for papermaking purposes (N2 adsorption–desorption), we suggest a methodology based on the cationic demand. A commonly used cationic polyelectrolyte, poly(diallyldimethylammonium chloride) (PDADMAC), became adsorbed onto thermomechanical pulp samples. Then, a potentiometric back titration with an anionic polyelectrolyte measured the cationic demand, expressed as microequivalents of PDADMAC per gram of pulp. Multiplying this value by the surface area of a microequivalent of polymer, considering rod-like conformation in the case of minimum ionic strength, yielded the SSA of the lignocellulosic pulp. Our system assumes that the quaternary ammonium groups were anchored through electrostatic and ion–dipole interactions. Measuring the carboxyl content allowed for discriminating between both kinds of forces. Finally, the model could be validated by plotting the estimated SSA values against the Schopper-Riegler degree, attaining high correlation coefficients (R2 ~ 0.98). Owing to the high molecular weight of the polyelectrolyte of choice (107 kDa), and more particularly in the case of fine-free pulps, SSA values estimated from the cationic demand were consistently lower than those from dye (Congo red) sorption. Instead of being a drawback, the limited diffusion of PDADMAC through fibers can enable papermakers to attain a more helpful quantification of the available surfaces in operations with low residence times.
Funder
Agencia Estatal de Investigación
Universitat de Girona
Publisher
Springer Science and Business Media LLC
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献