Relationship between Surface Properties and Fiber Network Parameters of Eucalyptus Kraft Pulps and Their Absorption Capacity

Author:

Azevedo Catarina A.,Rebola Sofia M. C.,Domingues Eddy M.ORCID,Figueiredo Filipe M. L.ORCID,Evtuguin Dmitry V.ORCID

Abstract

Water absorption capacity is a key characteristic of cellulosic pulps used for different commodities. This property is influenced by the affinity of the pulp fiber surface with water, chemical composition of the pulp, morphology, and organization of fibers in the network. In this study, surface properties of six industrial Eucalyptus bleached kraft pulps (fluff pulps) dry-defiberized in a Hammermill, which were obtained by wood pulping and pulp bleaching under different production conditions, were studied while employing dynamic water vapor sorption and contact angles measurements. The absorption properties of air-laid pulp pads were analyzed following the absorbency testing procedure and the relationship between these properties and pulp’s chemical composition and fiber network structure were assessed by multivariate analysis. The results showed that the accessibility of the fiber surface is related to the reduction of the contact angles, but, at the same time, to the longer absorption time and less absorption capacity of the fiber network. Therefore, the absorption properties of the pulps are not necessarily directly related to their surface properties. Indeed, absorptivity is related to the surface chemical composition, fiber morphology, and fiber network structure. Thus, surface carboxylic groups promote total water uptake, resulting in better absorption capacity. Greater fiber coarseness and deformations (curl and kink) provide a less wettable surface, but a more porous network with higher specific volume, resulting in more absorbent air-laid formulations.

Publisher

MDPI AG

Reference45 articles.

1. Past, Present and Future of the Global Fluff Pulp Market;Young;Nonwovens World,2007

2. Fluff Pulp Market Descriptionhttps://www.beroeinc.com/category-intelligence/fluff-pulp-market/

3. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

4. Fluff pulp—A review of its development and current technology;Parham;Pulp Pap.,1980

5. Avaliação de pastas lignocelulósicas para fins absorventes com ênfase em pasta fofa (fluff pulp);Jordao;O Pap.,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3