Microscopic and nanoscale mechanical properties of tonkin cane bamboo measured by advanced AFM methods

Author:

Nguyen Cam-Phu Thi,Schoenherr Peggy,Seidel Jan

Abstract

AbstractBamboo is a natural composite material with a high strength-to-weight ratio traditionally used in various consumer products as well as in building and modern advanced and sustainable manufacturing technology. While its macroscopic mechanical properties are well known, nanoscale studies of the mechanical properties of the hierarchical structure of bamboo at the level of individual cells and cell walls are lacking. Here we use different AFM-based methods to analyse the mechanical properties of individual bamboo fibres that are the foundation of the hierarchical structure at the nanoscale. The elastic modulus of the fiber in the outer region varies from 7.5 to 8.9 GPa, while that of the inner fiber ranges between 4.1 and 6.1 GPa. The results demonstrate that the fibre stiffness varies in nanoscale regions between fibre interior and the fibre wall and strongly depends on the position of the individual bamboo fibre within the culm. Outer fibres with high cellulose fibril density and low lignin level show low adhesion interaction force (13.5%) in the interface between cellulose and lignin/hemicellulose matrix, hence, resulting in low plastic deformation energy release during mechanical deformation. The implications of the interrelation of plasticity, lignin level, and adhesion force are discussed for the application of bamboo as a high-performance, renewable, and sustainable material.

Funder

Australian Research Council

University of New South Wales

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3