The effect of sulfate half-ester groups on cellulose nanocrystal periodate oxidation

Author:

Llàcer Navarro Saül,Nakayama Koyuru,Idström Alexander,Evenäs Lars,Ström Anna,Nypelö TiinaORCID

Abstract

AbstractPeriodate oxidation introduces aldehyde functionality to cellulose. The use of dialdehyde cellulose has been demonstrated for crosslinking and as a chemical intermediate towards functionalized cellulose. Commercially available cellulose nanocrystals (CNCs) typically carry a surface sulfate half-ester functionality, which results from their manufacture via sulfuric acid hydrolysis and subsequent esterification. The sulfate half-ester group is a bulky group carrying a net negative charge above pH 2 that modifies the colloidal and electro-chemical properties of the CNCs. Periodate oxidation is regioselective to the bond between carbons in positions 2 and 3 in the anhydroglucose unit while the sulfate half-ester groups are mostly considered to be located in carbon in position 6. This regioselectivity could be the reason why the role played by the sulfate half-ester group on modification by periodate oxidation has not previously been elucidated. Here, the influence of the sulfate half-ester on the oxidation of CNCs, which is shown to steer the oxidation kinetics and the properties of the resulting materials, is studied. Conventional physicochemical analysis of the oxidant consumption is accompanied by elemental analysis, Fourier-transform infrared, X-ray photoelectron and solid-state nuclear magnetic resonance spectroscopy, and wide-angle x-ray scattering analyses; the zeta potential is used to characterize the colloidal properties of the suspensions and atomic force microscopy for determining particle dimensions. The presence of the sulfate half-ester group decreases the rate of oxidation. However, the content of the sulfate half-ester groups decreases when degree of oxidation reaches approx. 50%. We demonstrate that the CNC surfaces are affected by the oxidation beyond the C2–C3 bond cleavage: insight into the kinetics of the oxidation process is a prerequisite for optimizing CNC oxidation.

Funder

Wallenberg Wood Science Center

Area of Advance Materials Chalmers

Chalmers University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3