Hydrogel bacterial cellulose: a path to improved materials for new eco-friendly textiles

Author:

Kamiński Kamil,Jarosz Magdalena,Grudzień Joanna,Pawlik Justyna,Zastawnik Filip,Pandyra Piotr,Kołodziejczyk Agata Maria

Abstract

Abstract In this paper, we present a novel, ecologically friendly technology for the synthesis and modification of kombucha-derived bacterial cellulose in order to produce textiles of desired physicochemical and mechanical properties. The procedure of manufacturing cellulose in the form of a stable hydrogel bacterial cellulose (HGBC) ensures the desired properties for the application of such a material, e.g., in the textile industry. Bacterial cellulose was obtained from a yeast/bacteria kombucha culture (a symbiotic consortium also known as “tea fungus” or SCOBY) that is easy and cheap to breed. The process of bacterial cellulose manufacturing and modification was optimized in order to obtain a maximum recovery of raw materials, minimal energy consumption and ensure the use of only natural and renewable resources. The obtained materials were characterized in terms of their wettability, mechanical properties, and flame resistance. Moreover, the morphology and composition of the materials were determined by using scanning electron microscopy and infrared spectroscopy, respectively. Additionally, it was proven that the HGBC materials might be used to manufacture various articles of clothing using commonly available sewing techniques, which are not adequate for non-modified cellulose-based materials. Finally, the synthesized fabrics were used as wristbands and parts of T-shirts and tested on volunteers to determine a skin-to-skin contact behaviour of the prepared fabrics. The reported results allow for confirming that the HGBC fabric may be used as a new textile and the proposed synthesis method is in accordance with the “green chemistry.” Graphic abstract

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

Reference57 articles.

1. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotech 39:76–88

2. Ahmed T, Shahid M, Azeem F, Rasul I, Shah AA, Noman M, Hameed A, Manzoor N, Manzoor I, Muhammad S (2018) Biodegradation of plastics: current scenario and future prospects. Environ Sci Pollut R 25:7287–7298

3. Akkus A, Tyler R, Schiraldi D, Roperto R, Faddaul F, Teich S (2017) Effect of polyethylene oxide on the thermal degradation of cellulose biofilm: low cost material for soft tissue repair in dentistry. J Clin Exp Dent 9:e875–e878

4. Andrade FK, Silva JP, Carvalho M, Castanheira EM, Soares R, Gama M (2011) Studies on the hemocompatibility of bacterial cellulose. J Biomed Mater Res A 98:554–566

5. Araújo S, da Silva FM, Gouveia IC (2015) The role of technology towards a new bacterial-cellulose-based material for fashion design. J Ind Intell Inf 3:168–172

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3