Manufacturing of cellulose-based nano- and submicronparticles via different precipitation methods

Author:

Reimer Martin,Eckel Felix,Rothammer Maximilian,Van Opdenbosch Daniel,Zollfrank Cordt

Abstract

AbstractNanoprecipitation is one of the most popular methods for producing polymer nanoparticles. However, the reported results show a large variability. In order to provide a first-hand comparative study, we prepared cellulose-based nanoparticles via different nanoprecipitation methods. Here, the influence of the coagulating solvents acetone, N,N-dimethylacetamide and tetrahydrofuran on the size and shape of the particles via precipitation using dialysis was investigated. The influence of temperature and concentration was determined by dropwise addition of the coagulation medium. Then, via rapid solvent shifting, particles were prepared from cellulose acetates with different molecular masses and the cellulose acetate propionate and cellulose acetate butyrate derivatives in the concentration range of 1–20 mg mL− 1. Thereby, it was possible to prepare spherical particles in the range from 43 to 158 nm. Furthermore, the impact of the molecular weight of these derivatives on the obtained particle size distributions was determined. It is possible to obtain pure regenerated cellulose particles in the nanometer range by a deacetylation of the derivatives. In addition, the findings were used to directly convert cellulose from a DMAc/LiCl solvent system into regenerated cellulose nanoparticles with a size of 10 ± 3 nm. Graphical abstract

Funder

Bavarian State Ministry of the Environment and Consumer Protection

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3