Grafting of poly(stearyl acrylate) on cellulose fibers as 3D-printable HDPE composites

Author:

Barba Enguerrand,Mietner J. Benedikt,Navarro Julien R. G.

Abstract

AbstractThis paper aimed to produce a bio-based filament, suitable for 3D printing (fused deposition modeling), made of surface modified cellulose fiber and high density polyethylene. The cellulose fibers (CF) were first surface modified and transformed into a CF-based macroinitiator through an esterification reaction with the 2-bromoisobutyric acid. We finally studied the ability of this CF-based macroinitiator to initiate a single electron transfer-living radical polymerization (SET-LRP) with an hydrophobic monomer: the stearyl acrylate. The grafting of poly(stearly acrylate) onto the cellulose fibers did strongly increased the adhesion, compatibility of the modified fibers with the hydrophobic host matrix (HDPE). Finally, the resulting hydrophobic fibers were extruded with the high density polyethylene (HDPE) through a counter-rotating twin-screw extruder, yielding a bio-based filament suitable for FDM 3d printing. The successful surface modification, such as the correct incorporation of the modified fibers into the thermoplastic matrix, were characterized through ATR-FTIR, 13C CP-MAS NMR, FE-SEM, and mechanical testing. Throughout those characterization techniques, it was concluded that the fiber surface modification significantly improved the compatibility of the fibers with HDPE. Finally, the 3D printing properties of the composite were tested and compared to those of pure HDPE through the 3d printing of simple objects. It was concluded that the printability of the composite made with poly(stearyl acrylate)-grafted cellulose overcomes the problem (shrinkage, warpage, print fidelity) encountered with the printing of pure HDPE. Graphical abstract

Funder

Fachagentur Nachwachsende Rohstoffe

Universität Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3