Rapid cellulose nanomaterial characterisation by rheology

Author:

Cainglet Hans Estrella,Tanner Joanne,Nasiri Naghmeh,Browne Christine,Garnier Gil,Batchelor Warren

Abstract

AbstractCellulose nanomaterial (CNM) aspect ratio strongly influences sheet formation and resulting mechanical, optical, and barrier properties. However, there is a lack of fast and reliable methods for CNM aspect ratio determination, limiting the reliable production of nanocellulose at industrial-scale. Current laboratory approaches comprise microscopic (e.g. atomic force microscopy (AFM) and transmission electron microscopy (TEM)), and sedimentation methods, which are time-consuming and limited to specific CNM fibre sizes. Here, we describe a new rheological method to determine the aspect ratios for the whole size range of cellulose fibres using rheology. Cellulose nanocrystals (CNCs), cellulose nanofibres (CNFs), and wood fibres in the form of Bleached Eucalyptus Kraft (BEK) were investigated. The aspect ratios of these three scales of cellulose fibres were determined by measuring the specific viscosity profiles of their suspensions at different concentrations from high to low shear rates (2000–0.001 s−1), and evaluating whether the fibre suspensions exhibited entangled or disentangled behaviour. The rheological results agreed well with those produced by AFM and sedimentation methods. Furthermore, cellulose fibre aspect ratios determined with specific viscosity measurements were generated in 5 hours for each feedstock, while sedimentation and AFM required at least 2 days to produce the same results. Ultimately, we demonstrate that rheology is a rapid and accurate method to determine the aspect ratio for the whole range of cellulose fibre sizes, a critical step towards facilitating their full-scale application.

Funder

Australian Research Council

Monash University

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3