Increasing the functional quality of Crocus sativus L. by-product (tepals) by controlling spectral composition

Author:

Orlando Matteo,Trivellini AliceORCID,Puccinelli Martina,Ferrante Antonio,Incrocci Luca,Mensuali-Sodi Anna

Abstract

AbstractCrocus sativus L. is a crop grown for spice production, and large amounts of residues from the flowers are produced during the process. The underutilized by-product from saffron spice production, the C. sativus tepals, was investigated as a promising raw material of natural bioactive compounds using light spectrum manipulation in controlled environments. The plants were grown under either light-emitting diodes (LEDs) or natural light (NL, greenhouse). LED experiments were performed in controlled-environment chambers (120 µmol m–2 s–1of photosynthetically active radiation, 18 °C, 16-h photoperiod). The LED treatments used were as follows: (i) red ʎ = 660 nm (62%) and blue ʎ = 450 nm (38%) (RB); and (ii) red ʎ = 660 nm (50%), green ʎ = 500–600 nm (12%), and blue ʎ = 4 50 nm (38%) (RGB). Flower growth parameters, total phenols, total flavonoids, flavonols, flavonol glycosides, and antioxidant properties were measured in harvested tepals. Floral by-products from plants grown under the two LED treatments accumulated higher amounts of antioxidant compounds compared to those of plants grown under NL. The total flavonoids content was significantly enhanced in the RGB LED treatment, while the corolla fresh weight significantly declined in the same treatments. The higher content of bioactive secondary metabolites in plants grown under both RB and RGB light environments resulted in increased antioxidant capacity measured by DPPH free-radical scavenging capacity and the ferric reducing antioxidant power method. These results indicate that manipulation of LED spectra could boost secondary metabolites and antioxidant capacity to obtain phytochemically enriched floral by-products with superior functional quality.

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Plant Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3