Phenotypic diversity and selection in biofortified cassava germplasm for yield and quality root traits

Author:

de Carvalho Ravena Rocha BessaORCID,Bandeira e Sousa MassaineORCID,de Oliveira Luciana AlvesORCID,de Oliveira Eder JorgeORCID

Abstract

AbstractIncreasing carotenoid content and improving other root quality traits has been the focus of cassava biofortification. This study aimed to (i) evaluate the genetic variability for total carotenoid content (TCC), as well as for root yield and root quality attributes; (ii) estimate potentially useful correlations for selection; and (iii) select parents for breeding and estimate the genetic gain. Data from 2011 to 2020 of 265 cassava genotypes with cream and yellow roots were analyzed for dry matter content (DMC), shoot yield, fresh root yield (FRY), dry root yield (DRY), harvest index, average number of roots per plant, starch content, root pulp color, cyanogenic compounds, and TCC. The best linear unbiased predictions showed great phenotypic variation for all traits. Six distinct groups were formed for productive characteristics of root quality, mainly TCC, DMC and FRY. Only TCC showed high broad-sense heritability ($${h}^{2}$$ h 2 = 0.72), while the other traits had low to medium magnitude (0.21 ≤ $${h}^{2}$$ h 2 ≤ 0.60). TCC was strongly correlated with pulp color (r = 0.70), but null significance for DMC. The network analysis identified a clear separation between the agronomic and quality attributes of cassava roots. The selection of the 30 genotypes for recombination in the breeding program has the potential to raise TCC by 27.05% and reduce the cyanogenic compounds content by 23.03%, in addition to increasing FRY and DRY by 22.72% and 22.95%, respectively. This is the first consolidated study on the potential of germplasm for the development biofortified cassava cultivars in Brazil.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado da Bahia

Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional

Foreign and Commonwealth Office

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Plant Science,Genetics,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3