1. Janardan Misra, I. S. (2010). Artificial neural networks in hardware: A survey of two decades of progress. Neurocomputing, 74, 239–255.
2. Baibhab Chatterjee Priyadarshini Panda, S. M. A. B. K. R., & Sen, S. (2018). Exploiting inherent error-resiliency of neuromorphic computing to achieve extreme energy-efficiency through mixed-signal neurons. arXiv preprint.
3. Buhler, F. N., Brown, P., Li, J., Chen, T., Zhang, Z., & Flynn, M. P. (2017). A 3.43tops/w 48.9pj/pixel 50.1nj/classification 512 analog neuron sparse coding neural network with on-chip learning and classification in 40 nm CMOS. In 2017 Symposium on VLSI circuits (pp. C30–C31).
4. Salam, F. M. A., Choi, M. R., & Wang, Y. (1990). An analog MOS implementation of the synaptic weights for feedforward/feedback neural nets. In Proceedings of the 32nd Midwest symposium on circuits and systems.
5. Wang, Y., & Salam, F. M. A. (1990). Design of neural network systems from custom analog VLSI chips. In IEEE international symposium on circuits and systems.