Author:
Zeng Hui,Cui Qiang,Huang XiaoHui,Duan XueWei
Funder
Natural Science Foundation of Jiangxi Province
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference58 articles.
1. Yuan, Z.N., Zhou, X., Yang, T.B.: Hetero-ConvLSTM: A deep learning approach to traffic accident prediction on heterogeneous spatio-temporal data. Paper presented at the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’18). Association for Computing Machinery, New York, NY, USA, 984-992 (2018)
2. Liu, H.C., Dong, Z., Jiang, R.H., Deng, J.W., Deng, J.L., Chen, Q.J., Song, X.: STAEformer: spatio-temporal adaptive embedding makes vanilla transformer SOTA for traffic forecasting. Preprint at https://doi.org/10.48550/arXiv.2308.10425 (2023)
3. Li, M.Z., Zhu, Z.X.: Spatial-temporal fusion graph neural networks for traffic flow forecasting. Paper presented at the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’18). Association for Computing Machinery, New York, NY, USA, 984-992 (2021)
4. Ni, Q., Zhang, M.: Stgmn: a gated multi-graph convolutional network framework for traffic flow prediction. Appl. Intell. 52, 15026–15039 (2022). https://doi.org/10.1007/s10489-022-03224-w
5. Lv, Z.J., Xu, J.J., Zheng, K., Yin, H.Z., Zhao, P.P., Zhou, X.F.: LC-RNN: a deep learning model for traffic speed prediction. Paper presented at the Twenty-Seventh International Joint Conference on Artificial Intelligence Main track. 3470–3476 (2018)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献