Large-scale regionalised LCA shows that plant-based fat spreads have a lower climate, land occupation and water scarcity impact than dairy butter

Author:

Liao XunORCID,Gerichhausen Monique J. W.,Bengoa Xavier,Rigarlsford Giles,Beverloo Ralph H.,Bruggeman Yvonne,Rossi Vincent

Abstract

Abstract Purpose In light of the sustainable diet debate, we conducted a large-scale regionalised LCA to answer the following questions: (i) does the climate advantage hypothesis of plant-based fat spreads and creams over dairy butter and cream hold regardless of the variabilities of product recipes, geographies and the influence of land use change (LUC)? (ii) Considering the climate-water-land nexus, is there a risk of shifting impacts from climate to water scarcity and land occupation, and what are the key opportunities for impact mitigation? Methods A framework for conducting a large-scale regionalised LCA was developed and applied to compare the environmental impacts of 212 plant-based fat spreads, 16 plant-based creams and 40 dairy alternatives sold in 21 countries per 1 kg of product. Data was compiled for different product recipes, key ingredient sourcing countries, production factory locations, energy mixes, packaging designs, transportation and end-of-life scenarios. Spatially (archetype) differentiated agricultural life cycle inventory data were generated, as well as LUC emissions for agricultural ingredients. A total of 18 environmental indicators were assessed. Results and discussion All plant-based spreads had a significantly lower climate impact than butter, with and without LUC inclusion. The regionalised analysis highlighted large variabilities across products, ranging from 0.98 to 6.93 (mean 3.3) kg CO2-eq for 212 plant-based spreads and 8.08 to 16.93 (mean 12.1) kg CO2-eq for 21 dairy butter with 95th confidence interval. The main drivers of GHG emissions for plant-based products are oilseed farming and the associated LUC emissions, which can vary significantly depending on type of oilseeds, quantity and sourcing country; in the worst-case scenario, the climate advantage is no longer valid due to LUC. Thus, the inclusion of LUC is essential for a robust assessment and hotspot identification. Overall, the risk of shifting impact was small, as most of the plant-based spreads also had lower impacts for water scarcity footprints and land occupation; 8 of the 212 products were not lower, due to oilseed ingredients with high embodied impacts. Conclusions This study confirmed that plant-based spreads had lower climate, water and land impacts than butter, despite variability of product recipes, geographies and influence of LUC. This research offers a framework for performing regionalised agricultural LCA for a large portfolio of products thereby enabling identification of inter-product variabilities and hotspots for the development of mitigation strategies. Key mitigation opportunities include reducing oilseed ingredients’ embodied impacts by optimising product recipe design and adapting supply chain sourcing and agricultural practice.

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

Reference50 articles.

1. Blonk Agri-footprint BV (2015) Agri-footprint - Part 2 - Description of data. Gouda, the Netherland

2. Blonk Consultants (2013) Direct Land Use Change Assessment Tool Version 2013.1

3. Boulay A-M et al (2018) The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int J Life Cycle Assess 23:368–378

4. BSI (2012) PAS 2050-1:2012 Assessment of life cycle greenhouse gas emissions from horticultural products. British Standard Institute, London

5. Conway D, van Garderen EA, Deryng D et al (2015) Climate and southern Africa’s water–energy–food nexus. Nat Clim Chang 5:837–846

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3