Life cycle assessment of hemp-based milk alternative production in Lower Saxony, Germany, based on a material flow analysis of a pilot scale

Author:

Ferdouse Jannatul,Silva Beatriz Q.,Baune Marie-Christin,Terjung Nino,Smetana SergiyORCID

Abstract

Abstract Purpose Recently, demand for plant-based milk products (PBMP) has increased for multiple reasons, such as the rapid population growth expected to reach 9.7 billion by 2050, health concerns such as lactose intolerance, nutritional aspects, ethical reasons, and environmental concerns. This leads to increased demand for food and competition for natural resources. Hemp-based milk is an emerging dairy alternative, and stakeholders in the supply chain are becoming increasingly interested in learning about the environmental effects of its production. This article aims for a comparative life cycle assessment of hemp-based and bovine milk with fat and protein correction to account for the differences in macronutrient content. Methods The cradle-to-factory gate LCA relied on experimental cultivation and milk production in Lower Saxony, Germany. Inventory was based on primary data from fields and the pilot plant of DIL e. V. and on literature and ecoinvent database to develop a life cycle assessment (LCA) model. The LCA was performed using Simapro 9.3 software and IMPACT 2002+ impact assessment method. The life cycle stages include cultivation, harvesting, and milk production. The study compared hemp-based milk to bovine milk based on 1 kg fat and protein-corrected milk (FPCM) as a functional unit (FU). Co-products are taken into consideration using mass-economic allocation. Results The results showed that hemp cultivation accounted for the highest impact (99%) in the production chain of hemp milk production. The GWP of 1 kg of FPCM hemp-based milk is 0.42 kg CO2 eq. The energy consumption for 1 kg of FPCM hemp-based milk is 4.73 MJ (12.26% lower than bovine milk). The other main factors impacting hemp-based milk production were terrestrial ecotoxicity (6.444E2 kg TEG soil) and aquatic ecotoxicity (2.458E2 kg TEG water). Hemp fiber was the co-product with 40% of the allocated impacts. The results are sensitive to the changes in fat-protein contents, functional unit, and system boundaries. The results demonstrated that the impacts of hemp milk production were within the range indicated for other PBMP production and 51.7% lower than bovine milk production in terms of GWP. This range primarily stems from field emissions, fertilizer application, and machinery usage during cultivation and harvest. Conclusion The results of the comparisons of bovine milk and hemp-based milk were dependable on the FU. The hemp-based milk has the potential to be a more sustainable alternative to bovine milk due to considerably lower impacts in impact categories—land occupation (99% lower than bovine milk), global warming (52% lower than bovine milk), and ionizing radiation (23% lower than bovine milk). It is primarily due to less use of agricultural machinery, less land requirement, and lower NH3 emissions than bovine milk in various stages of milk production.

Funder

DIL Deutsches Institut für Lebensmitteltechnik e.V.

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

Reference59 articles.

1. Alberta Agriculture and Forestry, Innotech Alberta (2020) Growing hemp in Alberta. Government of Alberta. https://open.alberta.ca/dataset/033de9fb-ab1c-4018-940e-4143f4caec85/resource/9babce43-b6f6-422c-85cd-283ea1a56147/download/af-growing-hemp-in-alberta-2020-06.pdf

2. Amaducci S, Gusovius H (2010) Hemp – cultivation, extraction and processing. Industrial Applications of Natural Fibres 109–134. https://doi.org/10.1002/9780470660324.ch5

3. Aydar EF, Tutuncu S, Ozcelik B (2020) Plant-based milk substitutes: bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. Journal of Functional Foods 70:103975. https://doi.org/10.1016/j.jff.2020.103975

4. Baraniecki P, Cierpucha W, Grabowska L, Kołodziej J, Kubacki A, Mańkowski J, Pniewska I, Spychalski G (2013) Technologia Uprawy I Przetwórstwa Konopi włóknistych. Instytut Włókien Naturalnych i Roślin Zielarskich, Poznan, Poland.

5. Bayram B, Greiff K (2023) Life cycle assessment on construction and demolition waste recycling: a systematic review analyzing three important quality aspects. Int J Life Cycle Assess 28(8):967–989. https://doi.org/10.1007/s11367-023-02145-1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3