Including maintenance in life cycle assessment of road and rail infrastructure—a literature review

Author:

Liljenström CarolinaORCID,Björklund Anna,Toller Susanna

Abstract

Abstract Purpose LCA is increasingly used in infrastructure policy and planning. This study maps approaches used in comparative LCA of road and rail infrastructure to (1) determine the length of the analysis period, (2) estimate the maintenance frequency, and (3) include the effects of climate change on infrastructure performance. A LCA may need to fulfil different requirements in different decision-contexts. The relevance of the approaches for decision-making in policy and procurement is therefore discussed. Methods Ninety-two comparative LCAs of road and rail infrastructure published in peer-reviewed journals January 2016–July 2020 were reviewed. Papers were found through a systematic process of searching electronic databases, applying inclusion criteria, and conducting backward and forward snowballing. Results and discussion The analysis period was commonly determined based on infrastructure service life. The maintenance frequency was estimated based on current practice, laboratory tests, modelling, or scenarios. The effects of climate change were considered in two papers by comparing results in a control case and in a changed climate. In policy and procurement, current practice approaches are not adapted to innovative solutions or to climate change. Modelling and laboratory tests could improve calculations of the maintenance phase but might have some limitations related to innovative solutions. Scenarios could be readily applied in a policy context; however, in procurement, consistent and generic scenarios should be used. Conclusions Results suggest what approaches could be used to account for maintenance in infrastructure LCA depending on the decision-context. The LCA community is suggested to research other approaches than current practice to account for long analysis periods, climate change, and innovative solutions. Additionally, literature not covered here could be reviewed for additional approaches and perspectives. Examples include stand-alone LCAs, method development papers, papers on the individual approaches and decision-contexts, certification systems, standards, and guidelines.

Funder

Mistra InfraMaint

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

Reference111 articles.

1. Al-Ayish N, During O, Malaga K, Silva N, Gudmundsson K (2018) The influence of supplementary cementitious materials on climate impact of concrete bridges exposed to chlorides. Constr Build Mater 188:391–398. https://doi.org/10.1016/j.conbuildmat.2018.08.132

2. Anthonissen J, Van den bergh W, Braet J (2016) Review and environmental impact assessment of green technologies for base courses in bituminous pavements. Environ Impact Assess Rev 60:139–147. https://doi.org/10.1016/j.eiar.2016.04.005

3. Arent DJ, Tol RSJ, Faust E, Hella JP, Kumar S, Strzepek KM, Tóth FL, Yan D (2014) Key economic sectors and services. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 659–708

4. Audi Y, Jullien A, Dauvergne M, Feraille A, D’Aloia Schwartzentruber L (2020) Methodology and application for the environmental assessment of underground multimodal tunnels. Transp Geotech 24:100389. https://doi.org/10.1016/j.trgeo.2020.100389

5. AzariJafari H, Yahia A, Amor MB (2016) Life cycle assessment of pavements: reviewing research challenges and opportunities. J Clean Prod 112:2187–2197. https://doi.org/10.1016/j.jclepro.2015.09.080

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3